
Exercise Chapter 3 – Fast Fourier Transform (FFT) 

 

In this exercise, you will visualize the (spatial) frequency response for some examples of 

images. 

Before starting, load and unzip the file “fft.zip” which contains the scripts you will need 

throughout this exercise. 

 

Discrete Fourier Transform 

 

1 – Add your own working folder paths to the path list in the path browser then open and 

analyze the script fft2d_sinus.m. Use the Matlab help (command helpwin) to understand how 

the Matlab functions that we are using work. What is the kind of the 2D input signal? 

 

2 – Modify the spatial period value (called period in the script): enter the values 4, 8, and 16 

(orientation 0). For all these period values, note the magnitude and the normalized frequencies 

of the lines down. Change also the amplitude and the DC offset (dc) of the 2D signal. 

Interpret the results. Next, test the period value 17 and interpret again. 

 

3 – Use the script fft2d_resolution.m to compute a higher frequency resolution FFT. Change 

now the 2D signal orientation: test pi/2 then pi/4 (period = 16 and period = 16*sqrt(2)). 

 

4 – Run the scripts fft2d_square.m and fft2d_checkerboard.m. Change the parameters and 

interpret the results. By using the script fft2d_sinus.m, write a script that displays a natural 

image and its frequency response. Run this script on several images. 



Solution to the exercise on FFT 
 
 
1 – The script fft2d_sinus.m allows you to visualize the discrete Fourier 
transform of a 2D sinusoidal signal. 
First, we define the characteristics of the 2D sign al: image size, spatial 
period, orientation, amplitude, and DC offset. Then  the function 
generation_sinus generates a 2D signal from these characteristics ( the 
function generation_sinus has been written for you). 
 
Size1 = 128 % image size  
period = 16 % spatial period  
orientation = 0 
amplitude = 128 
dc = 0 % DC offset  
im1= generation_sinus(size1,period,orientation,amplitude,dc); 
 
The image of the sinusoid is then visualized in two  manners: in a view from 
the top (2D vision with the function imagesc) and in perspective view (3D 
vision with the function surf): 
 

 
 

 
We note that the horizontal direction of the sinuso id involves the 
generation of vertical bands on the image (left). O nce the sinusoid image 
is computed and stored in im1, we compute its fast Fourier transform (FFT) 
with the Matlab function fft2. 
 
spectrum1 = fft2(im1)/(size1*size1); 
 
Then we use the function fftshift to shift the zero-frequency component (0, 
0) of the fast Fourier transform to the center of t he spectrum. 
 
spectrum1 = fftshift(spectrum1); 
 
The normalized vectors represent the horizontal and  vertical spatial 
frequencies. Here these vectors have the same lengt h and the same 
components, giving: 
 
vt =(- size1/2:1:( size1/2-1))/ size1; 
 



The absolute value (modulus) of the spectrum can be  displayed with the 
command: 
 
imagesc(vt,vt,(abs(spectrum1))); 
 
Here is the image of the spectrum modulus: 

 
 

We see two white points. We will show later that th ese points are not two 
delta functions but they are the two main lobes of a sinus cardinal 
function because the 2D sinusoidal function is bandlimited: 

 
Note that the orientation is horizontal along these  two points (it is 
orthogonal to the vertical orientations of the band s in the original 
sinusoid image). 
 
Note : 
 
The spatial period is the minimal number of pixels between two identical 
patterns in a “periodic” image. The minimal spatial  period in an image is 
thus two pixels: 

 
The maximal normalized spatial frequency ννννmax is thus equal to: 
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We can plot the image frequency response along the normalized spatial 
frequencies which belong to the range [-0.5, 0.5]. 
Let T be the period. The corresponding normalized f requency νnorm is defined 
by: νnorm = 1/T. 
 
2 –  
 

� Changing the period : 
 
By decreasing the spatial period of the sinusoid (v alue = 4), we visualize 
the image below: 

 
 
On the image, we observe one line per four pixels. 
The magnitude image is displayed below: 
 

 
 
The two white points are located at the spatial fre quency coordinates: 

{ ν1X= –0.25, ν1Y= 0} et { ν2X= 0.25, ν2Y= 0} 
 

 
When the orientation of the 2D sinusoid is zero, we  can represent one line 
of this 2D signal by a 1D sinusoid signal which pro pagates along the 
horizontal axis (Ox). 
The absolute value of the horizontal spatial freque ncy ν1X is equal to the 
one of ν2X. In fact: ν1X = - ν2X thus | ν1X| = |- ν2X|. This absolute value is the 
inverse of the spatial period: ν1X= –1/T and ν2X= 1/T. 



� Changing the amplitude  
 
The sinusoid values belong to the range [-A, A], wh ere A stands for the 
amplitude. The change of the amplitude A influences  the magnitude values of 
the two white points that we had previously noticed  on the spectrum image. 

 
 

� Changing the DC offset : 
 
By increasing the DC offset V M, we visualize the images below: 

 
 
The spectrum modulus has now a new frequency compon ent at the center (image 
on the right) adding to the two preceding frequency  components. This 
component corresponds to the spectrum DC gain locat ed at the spatial 
frequency coordinates { νX = 0, νY = 0}. This DC gain is equal to the DC 
offset of the sinusoid. 



� Period T = 17 : 
 
We compute the fast Fourier transform with the spat ial period 17: 

 
 
On the Fourier plane (left), the two white points a re “spread out”. On the 
right image, note that the frequency response is no t composed of only two 
impulses any more. The frequency response looks lik e the envelope of a 
sinus cardinal function. 
 
Let us consider a 1D sinusoidal signal to explain t his result. This signal 
is called f(x) and defined by: 

f(x)=VM.sin(2.ππππ.f0.x) 
 

The spectrum F( νX) of this sinusoidal signal is thus defined by: 

F(ννννX)= 
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where “j” stands for the complex number such as j²=  -1, and νX0 = 1/T. 
 
The spectrum modulus |F( νX)| is plotted on the figure below: 
 

 
  
This spectrum is computed for a 1D sinusoidal signa l of infinite support(x 
ranging from – ∞ to + ∞). 
In practice we cannot represent an image on an infi nite support, therefore 
the 1D sinusoidal signal is multiplied by a rectang ular pulse p(x). This 
rectangular pulse is defined by: 
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Here is the graph of the function p(x): 

 
 
The spectrum P( νX) of this rectangular pulse function is defined by:  

P(ννννX)= )X..sinc(L.L  

 
Where “sinc” stands for sinus cardinal: sinc(x) = s in(x)/x. 
In the script fft2d_sinus.m, the size of the input image is 128 × 128 
pixels. The sinusoidal signal propagates along the axe (Ox), therefore L = 
128. 
 
The spectrum modulus |P( νX)| is displayed on the figure below: 
 

 
 
Note that the length of the lobes is 1/L (except fo r the main lobe whose 
length is 2 ×1/L). 
 
The visualized sinusoid f V(x) is thus the function defined by: 

fV(x) = f(x).p(x) 
 

Its spectrum F V( νX) is given by the relation: 

FV(ννννX) = F(ννννX)⊗P(ννννX) = 
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Let us consider the T-periodic sinusoidal signal f V(x) has an amplitude V M, 
and is band-limited on a support whose length is L.  Here, its frequency 
response is plotted: 

 
 
Moreover, to represent the spectrum of this sinusoi d, a fast Fourier 
transform is computed. The spectrum is thus compute d for a finite number of 
its points. By default, with the Matlab function fft2, this number of 
points is equal to the number of pixels in each dir ection (horizontal and 
vertical). 
Here the number of pixels is the same one according  to two directions. 
After FFT computation the spectrum modulus |F Vs| is thus represented by 128 
points of the spectrum modulus |F V| according to the horizontal spatial 
frequencies. The horizontal frequency resolution ∆νX is then defined by: ∆νX 
= 1/128. 
 
Note that 1/L = ∆νX: on the spectrum of the sinusoidal signal; the len gth of 
any lobe (except the main lobe) is equal to the hor izontal frequency 
resolution. 
If the period T of the 1D sinusoidal signal is inve rsely proportional to 
the horizontal frequency resolution (i.e. 1/T = k. ∆νX, where “k” is a non-
null natural integer), the spectrum modulus |F Vs| represents only the two 
main lobes of the spectrum modulus |F V| (the other lobes are set to 0): 

 
 



Then for the periods: 

� T = 4, 
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The condition 1/T = k. ∆νX is thus true for these three periods. We visualize  
only the two maximal values of the main lobes. The other components are 
zeroing therefore the spectrum modulus looks like t wo delta functions (cf. 
1). 
When the period is set to 17, the condition 1/T = k . ∆νX is not true. We 
visualize thus some samples of the other lobes: 

 
If you want to visualize the other lobes whatever t he period is, you must 
increase the spatial frequency resolution to satisf y the condition: ∆νX < 
1/L. 
 
3 – The script fft2d-resolution.m allows you to increase the frequency 
resolution. We choose along one direction (the horizontal one  then the 
vertical one, or conversely) the number of pixels N 2 to compute the FFT. 
This number must be superior to the number N 1 of points in the original 
image along the same direction (horizontal or verti cal). The value of the 
padded points is zero. 
Let us consider a simple (2 ×2) grayscale image: 
 

 
 



We want to increase the frequency resolution to com pute the fast Fourier 
transform with 4 points along each direction instea d of the two original 
points. The fast Fourier transform is thus computed  on the following image 
(N 2=4): 
 

 
 
The four original pixels are marked by a red star. The other black pixels 
(zero padding) have been added to create a (4 ×4) image. 
When you want to compute the FFT in Matlab with a h igher frequency 
resolution, you can pass the optional argument N 2 to the Matlab function  
fft2: fft2(im1,N 2,N 2). Here are the results obtained with a 2D 8-period ic 
sinusoid: 
 

 
 
By increasing the frequency resolution, all the spe ctrum lobes are sampled 
even if the period is like 1/T = k. ∆νX. 
Let us consider for example a ×2 frequency resolution: ∆νX2= 2. ∆νX : 

 
 
All the lobes are now represented by a non-zero val ue (maximal value here). 



Changing the orientation : 
 
Here are the results obtained after having set the orientation to π/2 
(period = 16 pixels): 

 
As expected: 

- The propagation is perpendicular to the original on e (the bands are 
now horizontal in the image on the left); 

- On the right, the two points of the spectrum define  a direction which 
is perpendicular to the direction in the original s pectrum 
(orientation = 0) and to the bands of the associate d left image. 

 
In the same way, by setting the orientation to π/4 (period T = 16 pixels), 
the propagation orientation of the sinusoid is rota ted by - π/4. We 
visualize horizontal and vertical periodic patterns . These ones also create 
a diagonal periodic pattern whose period is equal t o 16 pixels. The 

horizontal and vertical periods are thus equal to 
2
T  pixels: 

 



On the image below, the spectrum modulus is represe nted by two white points 

which are located at the coordinates: 
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These two points define a direction which is perpen dicular to the bands in 
the associated original image. The 2D image of the frequency response gives 
several pieces of information about the spatial ori entation of the original 
signal. 

 
4 – By launching the script ff2d_square.m, you visualize the following 
image: 

 
The 2D signal is a square signal which propagates a long the horizontal axis 
(Ox). We can thus represent one line of this 2D sig nal by a 1D square 
signal which propagates along the horizontal axis ( Ox): 
 

 



Let us consider the following square wave: 

 
It is established that its 2D Fourier transform Y( ν) is defined by the 

relation: Y( )=∑
n

V.sinc(n/2).δδδδ( -n/T). 

Note that c(x)=y(x+ T 1/4)=y(x) ⊗ δ(x+ T 1/4), where T 1 stands for the spatial 
period of c(x), then:  C( )=Y( ).exp(2j .T1/4). The spectrum moduli of C( ν) 
and Y( ν) are equal. Here is their representation: 

 
Here the support is assumed to be infinite. In prac tice, the signal is 
band-limited, therefore we must again use the recta ngular pulse p(t): 

- |C( )|=|∑
n

V.sinc(n/2).δδδδ( -n/T)⊗L.sinc(2 )|, 

- Then: |C( )|=V.L.∑
n

|sinc(n/2).sinc(2 (  -n/T))| 

The spectrum modulus |C( ν)| is thus equal to the multiplication between two 
sinus cardinal functions: the first one corresponds  to the FFT of the 
window p(t) and the second one corresponds to the F FT of the square wave. 
The spectrum modulus is thus obtained by switching the delta functions for 
sinus cardinal functions in the figure above. 
Note that the DC offset is zero, therefore the DC g ain is also zero. Here 
is the form of the spectrum modulus: 

 



Here is the frequency response of the 2D band-limit ed square signal. As 
expected the representation of the spectrum modulus  is given by the product 
of two sinus cardinal functions: 
 
 

 
 

 
By launching the script ff2d_checkerboard.m, we obtain the following 
results (period = 16): 
 

 
 
We perform the XOR-operator between two orthogonal square waves to create 
the square checkerboard (you can also use the Matla b function checkerboard) 
When you visualize the frequency response of this i mage, you can notice 
crossed magnitudes which are similar to the one obt ained with a single 
square wave. 
In addition, note that the checkerboard patterns (o n the left) are periodic 
along the diagonal directions of the image. 



The frequency response of the checkerboard image is  displayed on the image 
below (period = 16). Here we plot the spectrum modu lus of the two basic 
square signals: the horizontal one and the vertical  one (warning: they do 
not appear when you display the frequency response) . The spectrum 
components of the checkerboard image are equal to t he crossed components of 
the two frequency responses which are associated wi th the two basic square 
signals. 

 
 
5 – Here is an example of a script for displaying t he frequency response of 
the image CLOWN_LUMI:  
 

im1=imread( 'CLOWN_LUMI.BMP') ; 
% colormap for displaying in gray levels 
figure(1);  
imagesc(im1);     
map = 0:1/255:1; 
map = [map',map',map']; 
colormap(map); 
% FFT 
[size1, size2]=size(im1(:,:,1)) ; 
nb_point1 = 2*size1;  
nb_point2 = 2*size2; 
spectrum1 = fft2(im1,nb_point1,nb_point2) /(size1*s ize2); 
spectrum1 = fftshift(spectrum1); 
% To reduce the DC component 
spectrum1 = 2*spectrum1; 
spectrum1(size1/2+1,size2/2+1)=spectrum1(size1/2+1, size2/2+1)/2; 
% normalized frequency vectors 
vt1=( - size1 / 2:size1 / nb_point1 : (size1/2 - size1/nb_point1))/size1; 
vt2=( - size2 / 2:size2 / nb_point2 : (size2/2-size2 / nb_point2))/size2; 



% To display the spectrum modulus 
figure(2); 
imagesc(vt1,vt2,(abs(spectrum1)));  
% 3-D representation 
figure(3) 
[X,Y]=meshgrid(vt1,vt2); 
mesh(X,Y,abs(spectrum1)); 
 

Here is the result: 

 
 
In natural images the DC component is very often hi gher than the other 

frequency components (middle and high frequency com ponents). We prefer 
generally to display the natural logarithm of the s pectrum modulus instead 
of the spectrum modulus itself. Here are the comman ds to type to display 
the natural logarithm of the “ Clown_lumi.bmp” image spectrum modulus: 
 
% We display the spectrum modulus 
figure(2); 
imagesc(vt1,vt2,(log10(abs(spectrum1)))); 
colormap(map) ;  
 
Here is the result: 
 

 


